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This research was supported under contract NAS1-10277 with the National
Aeronautics and Space Administration's Langley Research Center. The technical
monitor on the contract was H. Harris Hamilton II. The results are publighed
in two parts:

Part I Description of Bagic Method (NASA CR 111921)

Part II Description of Computer Program (NASA CR 111922)

Part 1 contains a detailed description of the theoretical approach and basic
equations that were used to obtain a solution to the problem. Part II contains
a deteiled description of the computer program and is intended to serve

primarily as a users' manual,
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CALCULATION OF INVISCID SURFACE
STREAMLINES AND HEAT TRANSFER
ON SHUTTLE TYPE CONFIGURAIIONS

Part I ~ pDescription of Basic Method

By Fred R. DeJarnette
North Carolina State University

SUMMARY

A computer program is developed which calculates laminal, transitional, and
turbulent heating rates on axbitrary blunt-nosed three—dimeneionel bodies at an
angle of attack in hypersonic flows. The geometry of the body is generated from
a twc—dimensional cubic spline fit to coordinates at geveral axial stations along
the body. 1nviscid surface streamlines are caleulated optionally from input
pressure distributions OF modified Newtonian pressures. Laminar and turbulent
neating rates are determined along & gtreamline from the epplicetion of the axi-
symmetric analogue, OTF gmall cross £low assumption. The transition region 18
speciﬁied optionelly by geometric location, momentumn thickness Reynolds number,
oTr jntegrated unit Reynolds aumber along & gtreamline. Transition heating rates
are then calculated as & weighted average of the jocal laminar and turbulent
values. Either perfect gas O equilibrium air proPertiee may be specified°
Results are presented for & blunted 15° half-angle cone, & blunted 70°
delta wing, and the HL-10 11£ting body. By compaxison with experimentel data
for the plunted cone the method was found to yield reasonably accurate laminax

heating rates for this case.
INTRODUCTION
Spece shuttle vehicles are gubjected to severe aerodynanic heating during
the reentry phase of their trajectories‘ In order to design appropriate thermal

protection systems, the heat-transfer rates to the exposed gurfacea are Te-

quired. gince many different configurations and flight conditions/ere being
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considered for the space shuttle, existing experimental heating rates are in-
sufficient, and an exhaustive new experimental program would be very costly.
This part of the report presents an analytical method for calculating laminar,
transitional, and turbulent heating rates on general three-dimensional bodies
for a wide range of reentry flight conditions. A description of the computer
program appears in Part II (NASA CR 111922).

For those flight conditions where aerodynamic heating is important, the
flow field generally can be represented by a boundary layer adjacent to the
surface and an inviscid layer between the boundary layer and bow shock wave.
Reentry velocities are high enough to cause the gas in the shock layer to devi-
ate from a perfect gas, but sufficiently low (less than 30,000 ft/sec) that
radiative heat transcer is small compared to convective heating.

Numerical methods are currently available for calculating inviscid and
boundary-layer flow-fields over two-dimensional and axisymmetric bodies at zero
angle-of-attack (e.g. refs. 1 and 2). Also, methods for calculating inviscid
flow fields over pointed and spherically blunted three-dimensional bodies have
been developed (e.g. refs. 3 and 4). However, these techniques require con-
siderable storage and computational time on existing digital computers, and a
satisfactory three-dimensional boundary-layer program is not available. The
problem is further complicated by the fact that shuttle type configurations are
general three—dimensional bodies whose geometry is difficult to describe ana-
lytically. During reentry they operate at large angles of attack, and laminar,
transitional, and turbulent heating may occur.

If tractable solutions of three-dimensional flow fields are to be obtained,
simplifying approximations must be used for the inviscid and viscous f£low-
fields. A substantial simplification to the viscous flow field may be achieved
by the axisymmetric analogue, or small cross flow approximation, for three-
dimensional boundary layers (refs. 5 and 6). This approximation allows the
heat transfer rate along a surface inviscid streamline to be calculated by any
method applicable to an equivalent body of revolution at zero angle-of-attack
provided the surface inviscid solution is known. Along each streamline the
"equivalent radius" or scale factor replaces the radius of the body of revo-
lution inu the axisymmetric analogus, and the distance along a streamline re-
places distance along the body of revolution. Thus each surface inviscid
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stzeamline on the three-dimensional body corresponds to a different equivalent
body of revolution at zero angle-of-attack,

In order to apply the axisymmetxric analogue, the invir:id solution at the
edge of the boundary layer must be known. For blunt nosed bodies with thin
boundary layers, the flow field properties at the edge of the boundary layer
are nearly the same as the corresponding inviscid solution on the surface, If
the surface streamlines are assumed to pass through the normal part of the bow
shock wave, then the surfuce entropy (for a perfect or equilibrium gas) is
equal to the entropy aft of the normal shock wave.” The remaining inviscid
solution needed for the boundary layer sclution can be calculated from the
pressure distribution; and when the pressure distribution is unknown, modified
Newtonian pressures can be used.

One of the major difficulties in applying the axisymmetric analogue is the
calculation of the surface inviscid streamlines and the corresponding "equiva-
lent radius'" or scale factor. References 7, 8, and 9 present several approach-
es for calculating the surface inviscid streamlines. Approximate methods for
determining the "equivalent radius" are given by Timmer (ref. 9), Pinkus and
Cousin (ref. 10) and Vaglio-Laurin (ref. 1ll), wherecas references 12 and 13
determined equivalent radii on blunted cones at an angle of attack by calcu-
lating the spacing between streamlines. These approximate techniques are not
satisfactory for general three-dimensional bodies.

DeJarnette and Davis (ref. 14) determined an analytical expression for the
"equivalent radius" on blunted cones at an angle of attack based on a simpli-.
fied method for calculating the streémlines.* Later DeJarnette and Tai (ref.
15) developed an "exact" method for calculating the streamlines and "equivalent
radius' from surface pressure distributions on axisymmetric bodies at an angle
of attack. Both techniques are extended to general three-dimensional bodies in
this report.

+ This assumption is invalid in those regions where the boundary layer has
""'swallowed" the entropy layer.

* DeJarnette also obtained analytical results for elliptic cones at an angle
of atrack, using this simplified method, while participating in the NASA-
ASEE Summer Faculty Research Program at Ames Research Center, NASA, Summer,
1969 (unpublished).
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Another difficulty associated with the surface streamlines is their be-
havior in & three-dimensional stagnation region. The stagnation point is a
singular point (nodal point), and thus numerical problems are normally encoun-
tered there, These problems are solved in the present method by developing
snalytical éxpresaions for the streamline geometry and "equivalent radius" in
the neighborhood of the stagnation point.

In the application of the axisymmetxic analogue along each surface invis-
cld streamline, metheds are required for the calculation of laminar, transi~
tional, and;turbulent heating cates on an equivalent body of revolution at zero
angle-of-atiack., Techniques which involve the numerical solution of the appro-
priate boundary layer equations, e.g. ref. 2, could be used; however, thls
approach would destroy the simplicity and short computational time desired in
the present method. Therefore, approximate solutions of the boundary layer
equations tn a body of revolution will-be applied.

lees' method (ref. 16) was used with the axisymmetric analogue to calcu-
late laminar heating rates on blunted cones &t an angle of attack in referéncea
14 and 15,'and the results compared well with experimental data. However,
Lees' method neglects pressure gradient effects and is valid only for cold
walls: As.a better approximation, the present method uses the local similarity
methoi of Qeckwith and Cohen (ref. 17), which includes the effects of pressure
gradients snd non-cold walls on laminar heating rates. However, special con=
sider@tiunimust he given to the application of this metﬁ%d to three~dimensional
stagn@ti:n:points.

iﬁe analytical calculetion of transitional heating rates and location of
the tzansition region has been unsuccessful to date, and the reader is referred

“to ref& 2 for a discussion of this phencmenon., For the present work, transi-
tionallhe&ting rates are computed as a weighted sum of the laminar and turbu-
lent heeting rates, using the weighting distribution of Dhawan and Narasimha
(ref. lE)é Along a surface inviscid streamline, the beginning and end of
transition may be specified optionally by one of the following three param-
etarg!

d. %eometric location, or _

2. value of local momentum thicknesa Reynclds- number, or

3. wvalue of integrated unit Reynolde number along a streamline.

B L e



" -y - - 1§

Many methods have been developed for calculating turbulent boundary layer
properties (see discussion in ref. 2). As a compromise between accuracy and
eimplicity, the technique developed by Spalding and Chi (ref. 19) for calcu-
lating turbulent skin friction coefficients based on momentum thickness
Reynolds number is used here. The momentum thickness is calculated from the
integral method of Reshotko and Tucker (ref. 20) for use in Spalding and Chi's
equations. Then the skin friction coefficients are converted to turbulent
heating rates through von Karman's form of Reynolds analogy (see ref. 21).

For the applications herein, both a perfect gas and equilibrium air axe
considered. Therefore, modifications to the methods of Spalding and Chi (ref.
19), and Reshotko and Tucker (ref. 20) are needed to make them applicable to
equilibrium air. To keep the computations down tov a minimum, the corxrelation
formulas of reference 22 are used for equilibrium air properties.

Results from the computer program are presented for a blunted 15° half-
angle cone, a blunted 70° delta wing, and the HL-10 lifting body as example
applications of the basic method.

SYMBOLS
a,b parameters defined by eqs. (150) and (151)
a spead of sound at edge of boundary layer, ft/se.

aj‘bj'cj’dj constants used in eq. (1l)

Ai,k coefficients Ffor spline function defined by eq. (25)

B Ratio of principal velocity gradients, see eq. (107)

Bi,k coefficients for spline function defined by eq. (25)

c(8) parameter used in eq. (95)

Ce local skin friction coefficient, 21w/(peUe2) 3 |
Cf,i incompressible skin frictlon coefficient )

D/DS derivative along a streamline

éNN’éT‘éll unit vectors on body surface given by egs. (33), (35), and (36)
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pj qu !uj

unit vectors in streamline coordinate system, eqs. (37), (34),
and (38)

unit vectors in cyiindrical coordinate system, see fig. 3
eccantricity of conic section |

body radius, measured from longitudinal axis

cubic spline function for body radius

function defined by eq. (177)

function defined by eq. (171)

function defined by eq. (29)

scale factor in f~direction, dq = h dB

adiabatic wall enthalpy, ftzlsec2

enthalpy inside ard at edge of boundary layer, respectively, ftzlsecz

wall enthalpy, ftzlsecz

reterence enthalpy, 2.119 x 108 ftz/sec2
scale factor in s~direction, ds = hsds
.compressible form factor, H = 6*/6m
incompressible form factor
transformed form factor

static enthalpy aft of normal shock, ftz/sec2

free-stream stagnation enthalpy, ftz/sec2

coefficient used in cubic spline function

Mach number

straight-line distance normal to body surface

compressible and incompressible Stanton numbers, respectively

pressure, lb/ft2

parameters defined by eq. (12)
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Pr Prondtl number
. q distance normal to streamline on body onrface, dg = h dg
4, heat-transfer rate at wall, BTU/ftz-sec
’ r vody radius (r = f)
Ro(¢) body radiue of curvature at nose
RT.R11 principal body radil of curvature at stapgnation point
Rd,an momentum thicknzzs Reynolds number oo U ds
Rnl integrated unit Reynolds number, J —Sue
R gas conatant for undissociated air? 1716 ;tz/sec2-°R
R position vector for points on body
S distance along a streamline, mearured from stagnation point
] (dS = hsda)
S$1125; bady coordinates at stagnation point
s enticpy
t time, sec
e enthalpy ratio, he/Hs
T temperature, °R
U,Ue velocity inside and at edge of toundary layer, respectively, fi/sec
U; function defined by eq. (174)
vy velocity aft of noxmal shock wave, ft/sec
\ inviscid spced on surface, f£t/sec
v inviscid veloclity on surface, ft/see
V“.VT velocity components along 51y and ST’ ft/sec ;
) &m unit vector in diraction of freestream velocity vector
Ve ' weighting function given by eq. (161)
X,¥,2 Cartesian coordinates ' )




o angle of attack

B coordinate normal €o gtreamline on body surface
B pressure gradient. parameter given hy eq. (146)
Y ratio of specific heats
) r body angle defined by eq. (30)
6* displacement thickness
6¢ body angle defined by ed. (31)
€ radius of circle around stagnation point, see fig. &
- wall enthalpy ratio, hw/Hs
C& enthalpy gredient normal to wall
B iaclination angle of gurface inviscid streamline, see €d. (37N
am momentum thickness, £t
A parameter defined by eq. (163)
p cuefticient of vigcosity, glug/fc-sec
g _coordinate along & gtreamline (as = hada)
- parameter defined by €q. (162)
) mass density, alug/ft3
o angle defined by eq. (47)
Ty wall shear strees, lb/ft2
b circumferential angle, see fig. &
v angle defined by eq. (78)
gubscripts: ) . .
¢
e edge of boundary layer .
lam laminar value
8 staguation point
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turb turbulent value

w evaluated at wall

€ evaluated on e—circle,‘(see fig. 6)
% freestream conditions

tre end of transition reglon

trl beginning of transition region

2 conditions aft of normal shock wave

ANALYSIS

Geometry for General Three-Dimensional Bodies

Before heating rates can be calculated, a description of the body geometry
is needed which yields slopes and radil of curvature in both the axial and cir-
cumferential directions. If the body could be described by analytiec equatiomns,
these results would be easily obtainable. However, the geometry of shuttle-
type configurations cannot, in general, be represented by an analytic equation.
Often only the coordinates of the body at several axlal stations are known, and
the body geometry'must be generated from this data. Therefore, a numerical
method is required to generate the boay shape and calculate slopes and radii of
curvature at any position on the body. This method must be capable of perform-
ing numerical interpolation and differentiation reasonably accurately.

It is’wall known that numerical differentiation 1s generally inaccurate.
However, the method of splines (see ref. 23) has been proven to be an affective
method for numerical differentiation, integration, and interpolation. The
effectiveness of the cubic spline to perform these operations accurately is a
consequence of the strong convergence properties it possesses. Before discuss-
ing the two-dimensional cubic spline, which is needed to deseribe a three-di-
mensional body, the one-dimensional spline will be developed first.

To illustrate the cubic spline for one dimension (one independent varia-
ble), consider the coordinates of a body cross-section (viewed from the rear)

with one plane of symmetry as shown in figure 1.




y
Figure 1. - Coordinates of body cross section (viewed from rear)

For the interval 0 S ¢ < 7, a mesh A of body positions is given by (yj, zj)
with j = 1, 2, .oy jm. It is convenient to transform these coordinates into
polar ccordinates by the transformation

g 2
3

1/2

2 f, v [yj2 +z,%) (1)

g R Yy

6, = tan (z,/y,) )

J
where
0'¢<¢<ooo<<l = T
1 %2 Iy

and ¢ is the independent variabie. Then the cubic spline for this mesh ylelds i
a function fA(¢) which is (1) continuous with its first and second derivatives
on [0, 7], (2) cnincides with a cubic in each subinterval ¢j—1 < ¢ g ¢j (=
2, 3, cary jn)’ and (3) satisfies fA(¢j) = fj (3 =1, 2, ¢v1y jm). Note that

the points ¢;, $,s +oes ¢j need not be equally spaced.
m
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Denoting fX(¢j) ie? n the cubic spline on the subinterval
[¢j-l' ¢j] is assumed to have a linear variation of the second derivative, i.e.
(¢, = ¢ (¢ = ¢,_7)
Ay m ;1 j-l

where A¢j - ¢j - ¢j-l' Then by integrating the above expression and evaluating
the constants of integration, the first derivative and spline functlons on

2 2
(¢, = ¢) (¢ - ¢, 1) (£, - £ ) Ad
Y ea) e AT, i-1 I e T _ 1 (4)
f£.<¢) Myl T2 Aqu Ty 2 A¢j * Afbj (mj mj—l) 6
e 2 ( y3 2| ¢ )
(¢, = ) R S m,_, 8¢,[(¢, ~ ¢
| ___J____—— _._.._..._._.i:_“...._. - j -l j .j_
B =my e me TN e, T 3 )
3 ] J
2 -
m, 86, |($ = &, 4)
R | =1
+ fj 3 5, (3)

In order to apply the equations above, it remains to calculate the second
derivatives mj at the mesh points. By wvirtue of equations (3) and (5), the
functions fX(¢) and fA(¢) are continuous on [0, m]. By equating the one-sided
limits of the derivatives at each interior mesh point, f;(¢j-) - f&(¢j+), the
function f&(¢) becomes continuous on [0, n]. These relations yield

A m Ad m £ - £ (¢, - £, .)
i . AT i o N s Tt e |

for 3 =2, 3, ..ou - L

Equation (6) gives (jm - 2) simultaneous equations in the jm unknowns my,
My eoes mjm. Therefore two additional conditions must be specified, the "end
conditionsg', to determine all the mj‘s. If the slopes at the end points,

f&(0+) and f&(n-). are known, the one-sided derivatives from equation (4)

provida the relations

£, - £ ‘
w72 1 evept
2m; + m, A%[ AL &)
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and £, - £
m + 2m, = -'.9——- g (n )t ‘3“""'1","“"""'12“' (8)
jmfl 3n ﬁ¢j 4 b¢j
m n
-axis, then gymmetly .

mmetzric about the ¥

gometimes these 8
gumed constant ov

1 1a &y
jopes &re not available,

wn in £ig-
er the end in-

dictates that i‘(0+) = f'(ﬂ-) w Q.
cond degivatives at the ends are &8

1£¢ the gurve gho

and the se€

tervals, i.e.
and LI -, (N

my = M2 R
quirementa may &

m

icktate that

Another tYP® of end condicion ig that gynmetry re

=-0 and m, =0 (10
In

nditions jg used,

e written a8

™1
three types of end ©O the aystem
4 conditions may ®

No mattelr which of the
n (6) and the em

of equations given by equatio

blml + c1m2 = dl |

azml + b_zmz + Colg " 62
33m2 + b3m3 + c3m4 - da
S (11)
a m + b m 4+ C m
3,71 g2 g 1Mt T P
a, m + b, m = d
TR In

m
and 4, are constants. This i8 8 gysten of 3, linear equations

where aj, bj, C.»
for the mj'a, and it ie of the rridiagonnl matrix foxm.
A very efficient algorithm for solving this systen 3g given on page 14 of
reference 23, 1In this algorithm, the following parameters are forxmed (for
g o=l 2y 00 i)t
py =8y -t b, " 0)
(12)

ay = =373
uy = (dj - 8y uj__l)/pﬁ (o, = o))
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Then by successive elimination of Myy MWpy soep M, = l from the 2nd, 3xd, ...,

In

jm-th equations of (12), the following equivalent equation system results:

My ey M + uy (13)
(3 =3 -1, 4 -2, oy 1)

These relations yield mj , mj a1 e Wy successively., Once the m,'s are
m m

3
evaluated, the functions fA(¢), fA(¢), and fX(¢) can be easily calculated from
equations (5), (4), and (3), respectively, for any value of ¢ in the interval
0<¢ =2

The thzree-dimensional bodies considered herein will be described by r =
£(x,¢) where x is distance along the axis from the nose, ¢ is the circumferen-
tial position, ¢ = tan-l (z/y), and r is the radius from the axis, r = V y§+zz.
Cylindrical coordinates were chosen over Cartesian coordinates in order to avoid
infinite body slopes in the cross-sectional planes. The body shape is generated
from the coordinates (yij’ zij) of cross sections at several axial statioms Xy
Xos vees xim (see fig. 2).

] =3,
/__
—t - =?
X T
P——l -~ ¢ j=3
jo1] g=2
X, X
172 x3 x4 xi y
y m
Side view View from rear

Figure 2. - Body coordinates

13




3
t
v
f

Here a two-dimensional spline function is needead to describe the body, and the
body shape may be a general three-dimensional tody except for the following
restrictione: |

1. The body must have at least one plane of symmetry.

2. The body radius r = £(x, ¢) must be single valued.

3. The nose of the body must be located at x = O and at this position

£(0, ¢) =0 and (0 $) -+ =,

Since the body has at least one plane of symmetry,. let this plane be the
x - y plane and only the half body 0 < ¢ < 7 need be described. A simple doubly
cubic spline (see Chapter VII of ref, 23) is used to generate the body shape
from thg input coordinates. The rectangular region 0 < x < Xind 0<s¢ =217 is
subdivided into a family of subrectangles Xy S X QR ¢k-1 < ¢ s ¢k where
Onx S Egp < e Xy and 0=¢l < by < ens ¢j = 1. Thus the simple doubly cubic
spline for this two-dimensional mesh yields a function £ (x,¢) which is: (1) an
element of <, (R), where C "(R) 1s the family of functions £ (x.¢) on the rec-
tangular ragion R whose n—th order partial derivatives, involving no more than
r-th order differentiation with respect to a single variable, exist and are con-
tinuous; (2) is a double cubic in each subrectangle, and (3) satisfies
fA(xi,¢k) = fik for each point of the double mesh.

To see how the one-dimensional cubic spline can be extended to the two-
dimensional cubic spline, apply the one dimensional spline function fA(¢) of
equation (5) to each cross section of the body at x2, Koy ooy Xgoo If the co-~
ordinates ¢j are chosen to be the same in each cross section, then the gpline

function becomes

3 3 2
(¢,-9) (¢~9, _ m, _,(x,08¢, { (¢,-¢)
I i A SO i
£,(x000) = my 4 (%)) 5 o * mj(xi) % A¢j el - 3 5,
A¢ (=%, _4)
+ €. x,) - AT A L (14)

y&) - my ) = 53,

The quantities which change from one x-station to another are mj-l(xi)’ mj(xi).

£
3- 3
position to yield fA(x,¢) if the x~-variation of mj_l(x), m

l(xi)' and f (xi)' Hence, fA(xi,¢) could be applied to any general axial
j(x). fj_

fj(x) were known. These variations may be determined by forming one-dimensional

l(x), and

cubic splines of mj(x) and £,(x) from the values of mj(xi) and fj(xi) at
X = Ky Xgy eees xim for each value of J = 1, 2, ..., Jp.

14
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The one-dimensional cubic spline function f,(x) presents an immediate

d£,(0)

problem because the end condition —d + « at the nose cannot be handled.

dx

However, for the region 0 = X 3 X S g the axial varilation of the radius

r = £(x,¢) for ¢ = constant can be described by a general conic sectizu for

most bodles of interest. This general conic section may be written as

[£G,01% = 2R (9)x + [e2(p) - 11

(15)

where Ro(¢) is the nose radius of curvature and e(¢) is the eccentricity of the

general conic section (e = 0 for a circle, 0 < e < 1 for an ellipse, e = 1 for

a parabola, and e > 1 for a hyperbola). Thereforz, if the function fz(x.¢) is
used for the doubly cubic spline, in lieu of £(x,¢), this function is well be-

haved at x = 0, because

2
€T (0
_—_7E?u£l = 2R_(9)

and

2.2
8 E8.0) pre?4) - 1)
Ix

Thus for the region 0 = X $X g x, it 1ls seen that

2.2
3_f_%:_¢_l = 2[e?(¢) - 1]
o9x

which means that
22 xy00) 978 (xp00)

sz ax2

and also

RGO O

Bx23¢2 8x23¢2
These two equations are needed for the end conditions below.

(16)

(17)

(18)

(20)

In view of the foregoing considerations, the doubly cubic spline represen-

tation for fz(x,¢) is

15




‘t (xi ¢) - mk l<x) —_-6—_2‘51:_--‘- m (x) —-'——-—2-5;—
(¢, = ¢
+ [f i (k7 = G0 ~§E AL
k

2 ,
Ad, (¢ = ¢ _4)
2 k k=1
+ [fk(x) - mk(x) g ] A¢k

(21)

%
where the points Q = 91 % 9y < ees @ aYE chosen to be equally spaced around

the circumference at each axial station (A¢k - ¢k " % ® constant). In
equation (21)
2.2
3°f (x,¢ )
(x) = —---"5"""“ (22)
3¢
and m (x) and f (x) ave determined from one-dimensional cubic spline fits to the

M

data mk(x ) and f (% ), respectively, for i =1, 2, «04, 1 « For x, 1 2% 5%

these functions take the form

(x, = X)3 (x - x )3 ’
m (x) = B y B, | —e——2ck
k t-1,k ~ 6 ax, i,k 6 ax
i
Ax? (xi - x)
b (e = xy))
* {mi,k - Bi,k 6 ] Axi (23)

* Although the input body coordinates are not generally equally spaced in the
circumferential direction and generally differ from one body cross section to
another, a one-dimensional spline fit to the data at each cross section can be
used to calculate new points fi(xi, ¢k) which are equally spaced in the cir-

cumferential direction.

16
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and
(%, - X)3 (x - x )3
£2(x) = & L T P— L
k i-1,k 6 ox, i,k 6 ax
A
+ £ - A ! -(:‘-i- *
1-l’k i"l.k 6 A}Ci
2
axT (2 - x, .)
2 i i-1
+ [fi,k - Ai,k 6 ] Axi (24)
1, .
where azf2 (%, 6. )
- 1’k 2
ik ® T3
! %
2
344‘. (x 39, )
B, 2~y b F 5 (25)
i,k ~ 2
3¢ ox
Axi = xi - xi—l J
The end conditions at x = 0 follow from equations (19) and (20) as
B,k " Bax and Ay = Ay (26)
In addition, it is assumed that at the end of the body
B = B and A, = A
1 =Lk~ "1k n 1Lk T %Lk (27)
These last two conditions imply that ——-8¢2 and f (x,¢k) have at mosgt a

quadratic variation in x over the last subinterval [xim-l' xim].

In the application of the cubic spline, it should be noted that the spline
function passes through every input coordinate point. Therefore, if an input
point is incorrect, the spline function still passes through that point. On
the other hand, the resulting derivatives from the spline function represent a
smoothing of the actual derivatives (see pp., 42-44 of ref. 23), When accurate
second derivatives are desired, a spline-fit of the first derivatives (called

a spline-on-spline) has been found to be an effective tool,

17




Inviscid Surface Streamlines

In order to apply the axisymmetric analogue to three-dimensional boundary
layers, it 1s necessary to trace out inviscid surface streamlines and calculate
the corresponding "equivalent radius' or scale factor along each streamline.
This scale factor (h) is the metric coefticient for the coordinate & normal to
the streamline and oun the surface of the body. It 1s a measure of the diver-
gence of the streamlines as they wrap around the body.

An orthogonal coordinate system will be used for the streamiine geometzy.
Let the differential of arc length along a streamline be dS = hE d¢, the differ-
ential of arch length normal to a streamline (but on the body surface) be dq =
h dg, and the differentlal of distance normal ro the surface be dn. Both hs
and h are metric coefficients or scale factors for the coordinates £ and 8,
respectively; however, only the scale factor h is needed for the application
of the axisymmetric aunalogue. Since the coordinate n is the straight-line
distance normal to the surface, its scale factur is unity. Along a streamline
the coordinate B is constant, but it varies from one streamline to another.

Define the body geometry by Monge's form r = £(x,9) in a cylindrical co-
ordinate system with the unit vectors €. €, and é¢ in the x, r, and ¢ direc-
tions, respectively (see fig. 3). Note that the cross section at the right of
figure 3 is viewed from the rear and that the coordinate system is xight handed.

Side View Rear View

Figure 3. Body Geometry

18
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Define
F(x,7,¢) & v - £(x,¢) = C
then the unit vector normal (outer) to the surface is

-é.f.." + & _iﬁé
P/ S - W x £ 3¢9 "¢
0 " T9F) L 172 (28)
where
. ,0f 2 1 0f.2
g2 ()" + 1+ [F 3;] (29)
Define the body angle I'(x,9) by
of
S 3 y
sin T - 175 (30)

where -7/2 < T < m/2 and also the body angle 6¢(x,¢) by

1 af
sin 6, = £_5 (31)
18,2, 1/2
1+ 594
where =-m/2 < 6¢ < n/2“ (see fig. 4). From eqs. (30) and (31) it also follows
that ]
1
cos ' = —I7§
cos 6¢ g
and
cos &, = WA 173
(1+ (E'gzé ]

Now the unit noxmal vector (eq. (28)) becomes

e = - sin I &, tcosT (cos 6¢ e - sin 6¢ e¢) (32)
As ghown in fig. 4 the unit vector
& = CO8 8 é, - sin 8 é¢ (33)

le perpendicular to the curve of the body in a cross-sectional plane (but gener-
ally not normal to the body surface). Using eq. (33) in eq. (32), the unit

* For an axisymmetric body, %%-E 0 and henca §, = 0,

¢
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normal vector can be written compactly as

€ = -gin [ € + cos [ & (34}
n x

NN

The unit vector tangent to the body curve in a cross-sectiomal plane (and also

tangent to the body, see figz. 4) is

€, = 6 x € = cos 6¢ g, + sin 5¢ €. (35)
and the unit vector tangeut to the body surface and normal to éT is
€ 2 é xé =cos & +sinT & (36)

Thus €, ,, én’ and éT are a set of mutually perpendicular unit vectors with &,

and éT.tangent to the body surface. -
Iﬂ\

r o= £(x,¢)

3

v

S

Za
__/./--/'{(
» ”//,//‘ .

\ N
\%

[

-

.
'

y

Figure 4. Rear view of body cross section

T

e e

In order to determine the slope of an inviscld surface streamline, let és
be a unit vector in the direction of the streamline wilth 8 the angle between

e and e , « Then
8 11
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e = cos © 31

s + sin 8 € (37)

1

where 0 <6 <7 and it is easily verified that és . én = 0, Define ée as

the unit vector tangent to the surface and normal to és, i.e,

e = € xe =~ gin 6 €, + cos 6 €r (38)

Here also és‘ én, and éB are a set of mutually perpendicular unit vector with és
and éﬁ tangent to the bodv surface. In terms of the unit vectors in cylindrical
coordinates, eqs. (33), (35), and (36) may be used in eqs. (37) and (38) to

write és and €, as

B

-

és = cog & cos I éx + (sin 6 sin 6. + cos 6 cos § sin F)ér

¢ %

+ (sin 6 cos 6¢ ~ cos 6 sin 6¢ sin P)é¢ (39)
and
&g = - sin 6 cos T e, + (cos 6 sin 6¢ - sin I sin 8 cos 6¢)§r
+ (coa B cos &, + sin B sin 6, =in T')e (40)

¢ ¢ ¢

In order to trace out an inviscid surface streamline, it is first neces-
sary to determine the angle © along the streamline. This angle can be ob-
tained from the inviscid momentum equations (Euler's equations) applied along
the surface of the body.

Euler's equation may be written as

24

- ZVP
0

2l

where the operator %E is the time derivative along a streamline (for steady

flows) and is related to the derivative D/DS as follows:

DS 13
DS = dS = hs d¢ is the differential of arc length along a streamline. With

where D . El.gﬁ. is the derivative along a streamline and again
8

4 ~
VeV as the acceleration vector becomes

21
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~ o 2 De
DV _ v oDV _ VoDV ') \-
Dt DS s %5 7 DS (41)
The pressure gradient in streamline coordinates is
~ DR L Lldpg R
Ip DS % TR 5E es * Sn ©n (42)
Thus Euler's equatiwns become
2 De . ;
v oy Vi s, o X)be, L ldp . dp ~
DS % ¥ DS [DS s "hog % T % (43)
The scalar product of és with eq- (43) yields the familiar equation
VDV L Dp
oS 5 DS (44)
where it is noted that
De
8 .
DS~ % 0
follows from e, T e = 1. Next, the scalar product of éB with eq. (43) gives
2 De
Vi B a--to
s oh 38 (45)

To evaluate the left side of this equation, the scalar product of e

8 with the

derivative of eq. (39) results in
de_ - &, = d¢ +sin i do (46)

where _
o ¢ -8 (47)

®
and the sngle o is shown on fig. 4.

Substitute eq. (46) into Eq. (45) to
obtain

b __.__&_..1_.6.2 '
b * sin I 4o - T (48)

This is the streamline equation in that it gives the angle 6 along a atream-

Q.

iine, However, before it can bz epplied, transformation operators are neces-—

gazy to relate %% and %-%g to derivatives in cylindrical coordinates. These

~

and dé, = - &_d¢.

* In obtaining eq. (46) from (39), note that dér - é¢ d¢ A °

22




AL g

transformation operators are derived below.

Let P be the position vector of any point on the body surface relative
to the orlgin of the cylindrical coordinate system (x = 0, r = 0). Since the
body normal coordinate n is zero on the surface of the body where r = £(x,4),

‘ the position vector can be written as R = K(x,9) end thus

SR 3R
dR = 5 d4x + 50 o

= & dx + e £ d¢ (49)

¢

(see ref. 24). 1In terms of streamline coordinates on the body surface, the

position vector cem also be written as

§ - i(E.B)
and thus ﬁ ﬁ
3 )
dR = 3F 46 + 55 d8
= es“hs de + eB h dg _ (50)
. where
Y-
g—g - es hs (51)
and
3% -
26 - eB h (52)

L By equating the right side of eqs. (49) and (50), there results

e, dx + e¢ fdo = & hs dg + eB h d8 (53)
The scalar product of this equation with éx yields
dx = es . ex hs dg -+ eB . ex h d8
and since %
| I X |
dx = 5E d¢ + 38 dg
it follows that
ox n A
3¢ e, e, hs (54)
23
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and
E-}ign ll‘
58 eB e, h (55)
Similarly, the scalar product of é¢ with eq. (53) provides
fd¢ = e, e¢ ha d¢ + eB . e¢ h dg
and therefore
é'QI,l .A
£ 3E ey e¢ hs (56)
and
W a4 . oa
£ 3 & * h (57N

Eqs. (54) to (57) may be used along with egqs. (39) and (40) to develop the
transformation operators as
9

1
38  h

=

5 (cos 9 cos G¢ + sin 6 sin 6¢ gin T') 3
[~ J— —— - —— Ne
- sin 8 cos I 3+ : 5% (58;

and

’U
ar

xd_ . L3
€ ox h

o
me

g
3¢

(=}
o]
L5

-t .
S h, 3

-

* €
S

_$_ 9
*F oY)

L
]
2"

(sin & cos §, - cos 6 sin &, sin I')

¢ ¢

2
cos § cos T Yy + 7

°¢

(59)

In the equations above it is implied that all derivatives are evaluated on the

body where r = £(x,¢) and n = 0; thus

) 2 ) 3
% " (5§)¢,n and 3$ - (35 X,n
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The transformation operators given by eqs. (58) and (59) can now be used to
write the streamline equation (eq. (48)) in its final form as

28 o - | —8_ 5.2 - S_ (2.
oS 2 ) sin 6 cos I o= (p )
ps ® 8
N (cos B cos 6¢ + sin 6 sin 6¢ sin T) Q_.(E_Q
£ ¢ Pg
in 6 - in § i
it cos & cos 1 2 4 (sin 8 cos §¢ cos 6 sin s sin I) 50
ax £ 3¢
(60)

For a given surface pressure distribution, whether experimental or theoretical,
this equation can be integrated numerically to determine & along a streamline
emanating from the stagnation point. However, eq. (60) is indeterminate at the
stagnation point, and this topic is covered below under the sub-heading Stag-
nation Region Streamlines. The density o and speed V may be obtained from
the pressure and entropy by use of isentropic relations for a perfect gas or
equilibrium air. The gecmetric location of each integration step along the
streamline is calculated by numerically integrating eqs. (54) and (36), which
by the use of eq. (39) become

Dx

Dg = cos & cos I (61)

and

sin 6 cos_fg - cos 9§ sin SQ sin T
7 (62)

A
B

Since the surface streamlines and their corresponding orthogonal lines are
curvilinear, the scale factors (metric coefficients) hs and h play an im-
portant rcle because in the relation dS = hs df the quantity d§ i1s an exact
differential whereas dS in general is not., Likewise dB is an exact dif-
ferential whereas the quantity dg = h d8 is not., The importance of this state-
ment lies in the fact that since df and dB are exact differentials, mixed

partial derivatives are interchangeable, i.e.

a?'ii_azi
2E3B8 | 9PAE
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whereas it is noted that

G
3Saq 9gaS

From eqs. (51) and (52) there results

2> -
3" R _ 9 R _ 3
3238 9E B T Y

and

2 (tha) a - y
5E (h es) Y (b &)
which upon expanding becomes
de 3h de .
Eb— a ——1-—B = —-——-s & -———s
9§ eB +h 2 YR + he ) (63)

. %
The scalar product of eB with the equation above yields‘

de
é.ll = h ——E— . é
3& 8 3B 8

The equation above may be combined with eq. (46) and the relation dS = hs dg

to give

Dh .28 j ginrp & (64)

Dh g
DS - 38 1]

This equation cannot be used to calculate the scale factor h along & stream-

line because %% is unknown when only surface pressures are given.
In order to obtain an equation for the scale factor h, rewrite eq. (48) as

h
——-%—-%Eq%%-e- sin r%"— (48)
aV™h

- — aée . ) .
—— 8 - s . -
As before, 3E eB 0 fullows from eB eB 1
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Differentiate this equation with respect to B8 and substract the result from
the derivative of eq. (64) with respect to £ to get

},DZh I hg 8p | , D(sin T) _3¢
h D82 hﬁ h 98 szh OB DS hag

_ Do _3(sin ) (65)
DS hoR
where the egualities
gfg_ - 326 and 820 - 820
LR 8R0S L3R  9pdg

were used to obtain eq. (65). This is the differential equation to be inte~
grated along & streamline to determine the scale factor h; however the terms
on the right side of eq. (65) must first be cast into a usable form.

By use of the transformation operators from eqs. (58) and (59), it is
found that the last two terms in eq. (65) may be expressed as

2
D(sin I) 30 Do 3(sinp) _ 595 T 908 3 [arag 30 ar 66
DS haB ~ DS hap £ 3% 8¢ 0% 06
‘and the first term on the right side of eq. (65) may be expanded to give
S T U T I NN B S 1
hsh 3B pv2h oB hsh 3 pv2h g
2
_xep 1 3o l3p 1 1V
)
h 28 p2V2h 38 h 8B pV4 h 98
\
1 13 (13
et 2 | = (67)
pv2 h 9B ( h 38 )
The four terms on the right side 6f eq. (67)’are evaluated below.
Take the scalar product of és with eq. (63) to get 4
e 3h
B .3 =S
h 3¢ -~ %s " 38 (68)
27
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£ oe
--.-.--é - . - -...‘.bg- . 4 )
Y: e 57 e 8 (69)

sh
396 ¢ -8
h[ag-i-sinfas]-as (70)
1 ahs
Comparing this equation with eq, (48), it is seen thag the term Py E-é— in eq,
(67) becomes s
oh
--.J:ﬂ. --.P_ - ~-%-—v —QR (71)
ha B ov<n 98

e L 1 2y
Y (@}_has M h 38 (72)
3pls

The Bernoulls equation oV 4v = - dp along the surface allowg the term RJ‘-—-
in eq. (67) tc be written ag

L7 vy - 2_8p
hag =253~ oh 38 (73)
The fourth ang last term to be evaluated for eq. (67) 1g %%QE %gg] ‘
By repeated application of the transformation Operator of eq (58) the follow-

2201 ] [ipgm siarag 1 [ pp 3 1 ar
has[has} [hDS" b8 | [*Ds]*"““esmraxh B
+£_32 sin 6 gin 4 cosrl-aiﬂ- (-cosesinG
£ 3¢ ¢ h 38 $

8, & .3 | 2
+ 8in 8 cog 6‘¢ cos ) (hlggi-f- 'LEA)] +sin2 e coszr"'a*'%

ox
=2 80 6 cos p (g -é)iiﬁﬁ-““ cay L e (74) '
B "7 T axap & o fzuz
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In order to obtain eq. (74), eq. (64) was used to substitute for %-%%.
the term éB . é¢ follows from eq. (40) as
GB . é¢ = cos 6 cos 6¢ + sin 6 sin 6¢ gin T (75)
and eq. (58) was used to write
10 cos 6 8in 6, - 8in & gdn T cos § (76) l
h 3R ¢ ¢ 1
Using the results from eqs. (66) through (73), the equation for the scale y
factor h (eq. (65)) becomes
2
2 P. PV 2
%P"}i" - 8262‘:2:%?%5("/%) 3 = w)
DS IRY) \)
B
2
. s B.@_Xz.l__a_[_l.z_(p,M]
psvi p V2 h 38 | h 8B 8
2 r
cos noe &
. ¢ |2 33 _ 3o f (75
£ 9x 9¢ 90X 3¢

Eq. (74) is used in the center term on the rlght side of eq. (75), and the
transformation operators of eqs. (58) and (59) are used to transform partial
derivatives from streamline coordinates to cylindrical coordinates.

The geodesic curvature of a curve £ = constant on the body surface is

1 Dh

st

bs

e P2

and it 1s a measure of the amount that the streamlines converge or diverge.

If %% is positive h increases along the streamline, and twe neighboring
streamlines move further apart, i.e. the streamlines diverge. Conversely, if
the streamlines converge %% is negative. As indicated in ref. 6, the form of
eq. (75) shows that ' . is not completely determinate. It may be multiplied
by a constant or any functivn of 8. However, changes in h will also result
in changes in B. TFor the analysis here it is convenient to choose h and B8
in such a way that they ruduce to the radius r and the circumferential angle

¢, respectively, for the ipecial cace of an axisymmetric body at zero angle-of-
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attack, Thus B will be dimensionless, aod h will have the dimensions of a
length,

In summary, the inviscid suvtiace streanmlines end their corresponding scale
factor h are calculated by numeriually-integrating eqs. (60), (61), (62), and
(75) for v, x, ¢, and h, raspectively, along each streamline. The
numerical integraticon schemu used here is the 4th ovrder veériable step-size
Runge-Kutta method, Initial conditions required to start the integration of
¢ach streamline are developed below in the section on Stagnation Region Stream-
lines. See che Appendix for addirional information on h.

Lt can be shown that eqs. (64) and (70) are the same as the Mainardi~
Cudazzi relations in vef. 24, and eq- (65) 4s equivalent to the Gauss charac-
teristic equarion. in vef. 24

Simplified Streamlines

A simplified method of approximating the streamline direction on the body
surface was used with good success by DeJarnette and Davis (ref. l4) in calcu~-
lating laminar heating rates over blunt-nosed cones at an angle of attack. In
this methed it is assumed that the direction of an inviscid surface streamline
is given by the resultant of the free-stream velocity vector minus ites compo-
nent normal to the surface®. This assumption was motivated by the fact that
in the Newton-Busemann theory the initial direction of a particle entering the
shock layer is in the direction of these simplified streamlines. However, the
Newton-Busemann theory has the particles following surface geodesics after
entering the shock layer, which differ from the simplified streamlines (see
ref. 7). The simplified streamlines described here are called the method of
steepest descent in ref. 7 and Newtonian streamlines in ref. 9. DeJarnette
and Tel (ref. 13) found that the simplified streamlines could be used to cal-
culate xeasonably accurate-laminar heating rates for some cases even when the
streamlines themselves were inancurate. Simplified streamlines are developed
here a8 an alternate method for calculating the inviscid surface streamlines
and corresponding scale fastor.

* The magnitude of the velocity, however, is calculated from the surface

pressure 2nd entropy.
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Define V., @s a unit vector in the direction of the free-stream velocity
vector, then the simplified method gives the direction of a streamline by the

equation
L - (V“,. en)en i e X (V°° X en) 76
s " - ~ N ~ ~ ~
v, - - en)en] ]en x (V. x en)]

~

With V_ in the body plane of symmetry (x - y plane), it can be expressed as
(see fig. 3)

Vm = oS 0 éx - 8in ¢ (ér cos ¢ - e, sin ¢) (77

¢

where the texm in parentheses is the unit vectecr in the y-direction. Using eqgs.
(32) and (77), the angle Y is given by

"

=V, . én » co8 o sin I + sin o cos I cos o (78)

cos VY
where 0 2 ¥ < 7. It thea follows that
xe)| = v x én = gin y (79)

and eq. (76) becomes

% © sin ¥ (80)

To determine the streamline direction in terms of 6, equate the expres-
sions for 38 given by eqs. (39) and (80) to get

sin o sin ¢

sin 6 = sin v (81)
and also
w08 o -cos ¥sinl cos o cosT - gino 8inT cos ¢
cos 8 cos I sin vy - sin ¢ (82)
(0s8sm

These equations along with eqs. (Al) and (62) are used to compute the streamline
geometry by the simplified method. In contrast to the previous section, which
calculated 8 £from a differential equation lnvoiving the surface pressure
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distribution, eq. (82) allowz & to be determined at any position on the body
without integrating a differential equation from the stagnation point to the
point in question,

It remains to develop an equation for the scale factor h corresponding
to the simplified streamlines. Recall that eq. (64) was

Qh-cg—G- -a-q- )
bg 3 T sin T 58 (64)
This equation can be used here to calculate h because the term %% can be
determined as follows. Differentiate eq. (78) to obtain
- sin ¥ %% w (cos o cos ' - sin & 8in [ cos c)%%
30
- sin o cos T sin 0 ¢ (83)
and by using eqs. (8l) and (82) this equation becomes
-a—i — -a—r—‘l /! ‘a—g-
56 " ~ <08 9 38 + cos I' 8in 8 58 (84)
Next, differentiate eq. (82) with reespect to £ and substitute eq. (84) for
W ..
3¢ to-get
36, cos y ar 3y _ 13 -
38 " sin v (sin © 5z + cos & cos r aB) sin T 38 (85)
Substitute eq. (85) into (64) to obtain
1Dh _cosy 1r 130
b DS " sin v [ain 8 4 g +* cos 8 cos I 86]- (86)
Then using the transformation operator of eq. (58) for %-%E- on the right side,

this first-order differential equation can be integrated along a simplified
streamline to determine the corresponding scale factor. Note, however, that
both eqs. (8l) and (86) are indeterminate at the stagnation point, and the __. .
analysis in the section below must be used to supply the initial conditions for
each streamline. Although this method of computing simplified streamlines
should only be used on the windward side of the body, it was also used on the
leeward gside in reference 14 with teasonably good-results for the corresponding

heating rates.
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Stagnation Regicn Streamlines

The equations developed previously for the inviscid surface streamlines
and scale factor h are singular at the stagnation point. In fact 1t will be
shown below that this is a nodal point. Therefore, an analytic solution will
be developed for a small region surrounding the stagnation point. This solu-
tion will then provide initial conditions to start the numerical integration of

the differential equations for the streamline geometry and corresponding scale
factor h given in the previous two sections.

The actual location of the true stagnation point would require & numerical
solution of the inviscid flow field over these three-dimensional bodies at an
angle of attack., However, the true stagnation point is generally close to the
Newtonian stagnation point for blunt-nosed bodies. Therefore, to be consistent
with both the modified Newtonian pressure distribution and the simplified
streamlines, the Newtonian stagnation point will be used in the analysis here.
This point is determined by the position on the windward side of the body where

This condition requires that I' = % - &, and when o > O symmetry dictates that
¢ =0 and 6¢ = 0 at the stagnation point.

For the region surrounding the stagnation point, it is adveatageous to use
coordinates 3,, and'ST which are along the body surface and in the directions
of &, &xd QT , respectively. These unit vectors were defined by eqs. (35)

11
and (36), and figure 5 illustrates these quantities.

Typlcal
atreamline

Stagnation
Point

Figure 5.- Stagnation region coordinates
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The coordinate S;; dis along the windward streamline (in the plane of symme-
try), whereas S, 1is normal to §,, but on the body surface.

Consider again the position vector, ﬁ, relative to the nose of the body
(x = 0, * = 0) as used previously. Then R can be considered & function of the
streamline coordinates (&,R) or the surface coordinates (sll’ST>’ It follows

that

>
> _ 3K ok ok 3R
dR = 3E dag 4-38 dR = 55 dSl1 + 5S dST
11 T
= h df & +hd8 ey = ds,, e +dSy en (87)

where it should be noted that dS11 and dST are not exact differentials.
Take the scalar product of 811 with the equatinn above to get (using

ds = hada) -

+h dg e, * 5, (88)

g

dS11 = d§ es ‘e

Recall that %E = [%E']S ; hence by using eq..(37)'it follows from eq. (88) that
DS

-——LLHA .A =
58 & * &, = cos 9 (89)

In a similar manner it is found that

—=— =& * e, = sin B (90)

which when combined with the previous equation yields

DS,,

=—=— a tan 8 (91)
DS11

The inviscid surface velocity vector can be written as
Vmve =v. . & +V, & (92)
%" Tt %

Considering V11 =V, (Sll’ ST) and VT ) VT (Sll’ ST). the stagnation point
(S;; = 0 and ST = 0) requires that V11(0, 0) = VT(O’ 0) = 0, and due to

symmetry,
avll (Sll » 0)

BST

= 0 and VT (Sll’ 0) =0
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Therefore, foF the reglon near the stagnation point,

V., & |Ta S and V., = | %8 S
11 3811 s 11 T 35,1, . T

and the equation of & ctreamline in this region can be written as

DS,y (P81 v, [¥u i
Dt EL S

vy,
38,, Jg
Define B = 'Eﬁf_'——' as the ratio of the principal vyelocity gradients at the
T l
‘-aST 8

gtagnation point. Then eq. (93) becomes

D8 8
_._.._.DST - %EL (94)
11 11
which may be integrated tO yield
B
81, ° c(B) Sp (93

where the neonstant' of jntegration c(g) 1is really a function of g since

DS
the derivative 5§L~ implies B 18 held conatant. The parameter c(g) dis-
11

tinguishes one gtreamline from another because g is constant along 2 stream-
14ne. TFor comvex bodies B > O and eq. (95 indicates that the stagnation
point is & nodal point. When the gtagnation region 18 spherical, B= 1 and
the streamlines emenate radially from the stagnation point. Fo¥ B ¥ 1, the
gtreamlines do not emanate radially from the stagnation point. and the slope of
the streamlines at the gtagnation point is obtained fxom eqs. (91) and (95) as
‘ 1-B
DST S
tan ea - ——-——Ds s - 1_5;% —-I—""'B c®) (96)
1l S
T
Hence, for c¢g) finite and non-zero, the slope of & gtreamline at the stag-

nation point is tan ea -0 for B<l ©F tan 6. » for B> 1; whereas
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for B = 1 (sphere) tan es - 57%7 which gives an infinite number of values as
8 changes from one streamline to another. It will be shown later that by the
use of modified Newtonian pressures B becomes the ratio of the two principal
radii of curvature at the stagnation point.

In order to evaluate C(B), consider the developed region around the stag-

nation point, as shown in figure 6.

m!}

/V/f-Typical Streamline
\\4 (For B < 1)
xa’¢a

Figure 6. Stagnation region

On the circle of radius ¢, corresponding to the point where a streamline
crosses this circle, the angle B is assigned as shown in figure 6. Also,
on thls circle the coordinates of the streamline are S11 = ¢ cos B and

Sy = € sin . Now the streamline equation §,, = c(®) Sg is assumed to hold
throughout this circular region. Applying this equation at the point where
the streamline crosses the circle yields
B
¢ cos B = C(3)(e sin B)
which gives

c(p) = —S-ses B (97)
(e sin 8)

Thus the parameter C(8) aiso depends on the value of & chosen,
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The equation for the streamlines is now

511 cos gl 5278
~ "8 | % (98)
sin" 8

Different values of 0 < B < 7 yield different streamlines. The slope of a

streamline followa from eqs. (91) and (98) as

tan 6 = -1 = sin?ﬁ,
DS11 B cos B

(s,/e) "7 (99)

and for Bs the value of © on the & circle, where ST = ¢ gin B, the
equation above gives

tan §_ = -"—%—ﬁ (100)

Hence for B ¥ 1, o, ¥ 8; whereas for the sphere (B = 1) 6. = 8 (radial
streamlines). The windward streamline is B = O and the leeward is B = 180°.
Next, consider the evaluation of the scale factor, h, in this region

surrounding the stagnation point. Take the scalar product of e, with

8
' equation (87) to get
hdf = dS11 e, * & + dST p ° es
Congidering B = B(Sll’ ST), the previous equation gives
-a-—e—- = & L4 e -
h asT eT » eB cos ©
Hence h = —22° 8 (101)
DST
The derivative %%— 18 obtained by differentiating eg. (98), and the result is
T

38 _ B cos g sin 8

(102)

8ST ST (sinzﬁ + B coszs)
The term cos © may be obtained from equation (99) as
B cos B
cos 6 ™ . (103)
[B2 cos? B+ sinZBB STTB 2] 1/2
€
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Substituting egqs. (102) and (103) into eq. (101) yields the following equation
for the scale factor
(sinzs + B coszs)sT

h = (104)
S.\ 2-2B, 1/2
[B2 coszs + ainzBs (Ez) ] oin B
On the eircle of radius ¢, where ST = ¢ gin B, the scale factor becomes
2 2
(sin”f + B cos"Rle .
B =5 3 2.1/2 (105)
€ (8in“B + B cos“B)

For later use, [%%]s is needed, and this quantity can be determined from the
derivative of eq. (104). The result is

Dh sinzg + B.coézg 2
[5’&‘ ]s =Bl 2 3 3 (106)
gin“8 + B” cog 8
Again, it is worth noting that for a spherical region B = 1 and eqs. (105) end _
(106) give
Dh
hs = g and [DS ]a 1

which to first order are correct. _
As shown by Reshotko, ref. 25, the ratio of velocity gradients, 3B, may be
evaluated from modified Newtonian theory as

By

- Ry
where
Ry | — (108)
r <&
cos 3% s

is the surface radius of curvature in the ST direction, and

1

3T (109)
cos‘P %

Ryp = -

i8 the surface radius of curvature in the S11 direction, both at the stag=

nation point,
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The location of each streamline on the & circle is determined by purely
geometrical considerations. Suppose the stagnation region inside the ¢
cizcle 1s represented by part of an ellipsoid with principal radii of curva-
ture given by Rn and Rll' Then for s/RT << 1 the coordinates of a stream-
line on the € circle are:

€ CO08 O 2 2
I e[cos B sin o +-§;-——§—— (8in™B + B coa“R)] (110)
€ ain o 2 2
Y " f‘ + e[cos B cos o - E;-——E—— (8in™f + B cos“R)] (111)
2.~ ¢€ ein 8 (112)
¢ = can (z /y ) (113)
€ e'’e

Note that the form of the above equations causes no difficulty at o = O,

In choosing & value for &, a compromise between accuracy and computational
time must be made. The smaller the value of ¢ the more accurate eqs. (110)
through (113) become. On the other hand, it was found that the step size used
to estart the numerical integration of the streamline squations outside the ¢
circle must be less than about €/10. After testing several values of ¢, a
value in the range 0,01 < e/RT < 0.1 was found to be sufficiently small to
make egs. (110) through (113) reasonably accurate, yet laxge enough to keep
the integration step size for the streamline equatione from becoming prohi-
bitively small.

Surface Preassure Distribution

As mentioned previously, the calculation of the inviscild surface stream-
lines and heating rates are dependent on the surface pressure digtribution.
Two options are comsidered here for the pressure distribution, dapending on
whether pressure data from another source is available or not. First, if
experimental or theoretical pressures (ratioced to stagnation pressure) are
known, tabulated values around the circumference at several axial stations
are used to generate a two-dimensicual spline function for the pressure ratios
and derivatives at any position on the body. This two-dimensional spline
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function is similar to that used to describe the body geumetry except for the
axial variation. For blunt-nosed bodies, R, . at x = 0 but 2p_ is

X Wx
finite there. Therefore, the pressure spline function is developed to vary
with /X 4in the axial dire:tion., For a given circumferential angle ¢ the

derivative 25: for both x = 0 snd the end of the body is determined by the
VX

derivative from Lagrangian interpclation,
When surface pressures are not available from some other gsource, the
second option 1is to use modified Newtonian pressures, i.e.

P P,
Poa (1 - Dcosty + — (114)
P, Py P,

where the angle Y 1s given by eq. (78). Since derivatives of the pressure are
needed to calculate the streamline geometry and scale factor, modified Newtonian
pressure ratios are computed for each tody coordinate used to generate the body

geometry, and then the same pressure spline function described above is used to

spline fit this data. In the "shadowed" region (cos ¥ < 0), p = p_ is used.

Gas Properties at Edge of Boundary Layer

In the calculation of heating rates, the local pressure (pe), denaity (pa).
enthalpy (he), veloclity (Ue), spaed of sound (ae), and coefficient of viscosity
(ue) are needed at the edge of the boundary layer. The first-order boundary-
layer approximations allow the pressure at the edge of the boundary layer to be
the same as the corresponding surface pressure (pe = p), which was discussed
in the previous section. Also, the boundary layer is assumed to remain suf-
ficiently thin so that the entropy at the edge of the boundary layer 1s constant
and equal to that value aft of a normal shock wave. This section describes how
to calculate the other flow-field properties from the pressure and stagnation.
properties.

Equilibrium air properties. - Many elaborate computer programs are avail-

able for calculating equilibrium air properties. However, these more sophisti-
cated approaches require considerable computational time and storage locatiomns.
In order to keep thr computations relatively simple, the correlation formulas
of Cohen (ref. 22) re used here to calculate the equilibrium aif properties.
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These formulas were shown to be quite accurate in ref. 22 for pressures in the
range ZLO-4 atm., < p < 10 atm. and an enthalpy range from 128.7 BTU/lb (corre-
sponding to a temperature of 540°F) to 16,930 BTU/lb (corresponding to flight
at approximatelw 29,000 ft/sec).

Assunidng an isentropic expansion from the stagnation point, eq. (65) in
ref., 17 gives the enthalpy (he) as

035

035 [ &= -1
hom 3,3454 % 108 [ Pg ] [ Pg

€ 8 g 2117 LCHs/hE)‘B 77

(115)

where H5 is the stagnation enthalpy and
hF = 2,119 x lO8 ft2/sec2

This approximate equation for he is more restrictive than the limitations
given previcusly. Beckwith and Cohen (ref. 17) found that eq. (115) gave
results generally within 3 percent of highly accurate computerized properties
except when Py ? 5 atm with H < 4,500 BTU/1b.

With he given by eq. (113), the density can be computed from the equa-

tion (gee ref. 22)
-5 .965
7.344 x 10 7 ( )

e [ (he ).6123]
1- 10477 | 1- |2
By

and then the coefficient of viscosity is

-10 «992

2.0144 x 107 (52=)

- 2117 (117)
He h_ |.3329
e 1 - 1.0213 [l - (F_ ]
E
The velocity is obtained from the adiabatic energy equation as

- 1172
Ue [2(Hs - he)] (118)
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Although the local speed of sound 3, is not given in ref, 22, it can be
readily calculated as follows. Since the entropy at the edge of the toundary

layer is assumed to be constant,

a® = 9P

o dpe (1)

The inverse derivative dpe/dp can be. obtained from the derivative of eq.
(116), using the isentropic relation dha " dp/pe. The result is

ha +6123

.;.:.2. ~ ...5... - 965 .5._ S U U T 5133 (120)

e ho {1 -1,0477 |1~ |22

] n
: E
Finally, the Mach number follows £rom

Ue ,
M, o= 2 (121)

(1]

Perfect gas properties. - For a perfect gas with vy = 1.4, the usual

isentropic relations, as given in ref. 27, may be used to obtain the following

equations:
- a2/7
ho=n |E- ] (122)
e s |p
L. 8
X 5/7
= P_ .
Pe = Pg P (123)
. L/2 .
Ue [Z(Hs h )l (124)
he
T = oie (125)

The coefficient of viscosity is computed from Sutherland's law, which gives

2.27 x 2078 17 32

o T_ + 198.6
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and the speed of sound is simply

2
a, = (l.4)p/pe (127)

Stagnation propeities. - In the analysis here the stagnation streamline

ie assumed to pass through the normal part of the bow shock wave. It is then
necessary to calculate both equilibrium air and perfect gas stagnation-proper-
ties from known values of Per P T, and Vo

First, consider equilibrium air. The conservation equations for mass,

momentum, and energy across & normal shock wave are:

pw Veo - 92 V2 (128)

2 129

Po * 0 Vo™ Pyt o,V Vv, (129)
Vi vg

Hs = h, + ~ - h2 + -5 (130)

These equations must be solved iteratively for equilibrium air, and the pro-
cedure used here is as fullows:
1. Assume v, = 0.
2, Calculate P, from eq. (129;.
3. Calculate h2 from eq. (130).
4, Calculate Py from eq. (116).
5. Compute & new value of i) from eq. (128); then go btack to step 2
and start the process again.
6. Repeat steps 2 through 5 until the new value of Vo is sufficiently
close to its previous value to give convergence. For an accuracy of
107, six iterations will generally suffice.

Using Py hz, and Hs’ eq. (115) can be rearranged to give

1
h 033 h. .3877 H ‘.3877 035
E 2117 2 8
Pg =Py (1% 5 e B ) =3¢
3.345 x 10 Py E 2
(131)
thea eq. (116) can be used to calculate Pyt
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where the factor 778 has been added to make q, have the dimensions of
BTU/ftz—sec. This equation can be applied independently to any inviscid
surface streamline. However, it becomes indeterminate at the stagnation
point since both Ue and h go to zero there. This indetermancy can be re-
solved by the use of the results obtained in the section on Stagnation Region
Streamlines.

From eq. (104), the scale factor h 1in the stagnation region is

(sinzﬁ + B coszﬁ) ST

h= G sin 8 (135)

where

2-2B. 1/2

¢ = [B% cos®s + s1nBp (s,/)*7%8) (136)

Replacing V by the velocity at the edge of the boundary layer Ue’ egs. (91)
and (93) may be combined to give

VT G ST (BVT/BST)s
U =V = = = (137)
e sin 8 sinBB (ST/e)l B
and also
DS G DS
T . T
DS sin 8 (138)

sinBB (ST/e)l-B

Thee» equations are accurate to the first order in the stagnation region, and

tc be consistent the pressure ratio to first order of accuracy is

2. . 3
P 1 (139)

Eqs. (135) through (139) can now be used to evaluate the integral in eq. (134)
as

8 U av (sin8 + B cos2g)? ¢2~2B g 2+2B
J = VE b? DS = \'lr_ asT 2+2B : (140
ps ® ® T sin

° B (2 + 2B)

which can be used to evaluate the indeterminate part of eq. (134) as follows:
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Using this result, the limiting form of eq. (134) becomes

aV,
" "067 “ T
‘\/l-e-B Pr Hs—\/(pe “e')s [-3-5— ]s (142)

T

o

qW,B =

o]

N
~3

Consistent with Lees' approximations for a cold wall, Hs 5 Hs - hw.

(pe “e)s o (pw “w)s , and thus eq. (142) is essentially the same as Reshotko's
equation (ref. 25).

For the present analysis eq. (142) is modified so that it will reduce to
two-dimensional and axisymmetric stagnation-point heat-transfer rates that are
compatible with experimental results. In ref. 17 the following equations were

found to compare reasonably well with experimental data:

0.577 __=.6 YA .06 (DU, ]
(qw,s)Z—D = 778 Pz (pe pe)s (pw uw)s “\WF[BEE ] (Hs_hw) (143)
8

3

DUe

00768 "“6 . 04 ol —_ _
(qw.s)axisym. = 7778 Pr (pe“e)s (pw“w)s [DS ]s (Hs hw> (144)

Consistent with the analysis of ref. 26, the factors 0.577 and 0.768 in egs.
(143) and (144), respectively, are replaced by

I
.. (B.)
0.768\f 2 (145)
CW(BS = ,5)

for the general three-dimensional stagnation point. Using the axisymmetric

analogue, the pressure-gradient parameter B for a relatively cool and

isothermal wall is determined from eq. (33) in ref. 17 as
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8
Ue 2
2 J ) 7 h° D8
Pg Vs
Q

- (146)

t
p [ Y e [Je, 17
DS V., P V.

where te - he/Ha" For a sphere E; = 0.5, whereas E; = 1 for a cylinder,
Using eqs. (146) and (135) through (139), it is found that E; for a general
three-dimensional stagnation point is

— 1 ]
Bs Bl for B> 1

and (147)
Bs - E?I for 0<B<x1l

However, Beckwith (ref. 5) found that E; 2 1 - % for .5 < B ¢ 1, which gives
the correct limiting values for a sphere (B = 1, E; - %9 and a cylinder (B = Q,
§; = 1) but disagrees with eq. (147) above. Eq. (147) gives E; --% for a
spheze (B = i), but for the cylinder (B = 0) it gives Bs = 0, This result is
not surprising for the axisymmetric analogue because the streamlines are assumed
to originate from a single stagnation point, and therefore all the streamlines
on the cylinder are forced to emanate from this stagnation point rather than
from the stagnation line along a generator of the cylinder. As will be shown
below, the pressure-gradient parameter E; has only a small influence cn the
magnitude of the term given by eq. (145).

From eqs. (52) and (59) in ref. 26, the following equation is obtained

LU -

C 1+ .527 §_ 88
e Y_ S —— = 1.033 Br__ 686 (148)
¢, (B = .5) 1,116 + 411 8 °

Using this result in eq. (145), the modified form of eq. (1l42) consistent with
eqs. (143) and (l44) is
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- .686
q - ;%%% Eg— (1,033 L 2 s €56
W) 8 1,116 + 411 E; ’
L a b _ .
x (p, uw) 5 (Pe ve) g (Hs hw) (149)

ty 1inearily with E; pbetween the

(143) and (144). Hence,

The exponents & and b 8xe assumed to va

values for a sphere and a cylinder in eqs.

as= 0.1~ (,os)(E; - .5 (150)

p=0.5-28 (151)

ig small eince 41t enters €q. (149) primarily
(145), and this factor is only weakly dependent
The factor

The effect of Bs on qw,s

through the factox given by eq.
on E;, varying from ,9256 for Es = Q to 1.033 for E; - 1,

av
K z l in eq. (149) is obtained from the nodified Newtonian pressure distri-
8 —

BST N

bution as

(152)

Laminar Heat-Transfer Rates

ic analogue to solutions of the locally

Application of the axisymmetr
the laminar heating-rate as

g in ref. 26 glves

similar boundary-layer equation
D Es\ 1/2
v l ‘
w

%.s v |8 V B Ve Bty LA
s\ V.| Js :

48

o . | . . . 7 L0 . . | ) - . ‘ Wk.



- .4

~

For a relatively cool wall the equation of state gives

. = B (154)

Then for an isothermal wall and H, = uw(Tw), it follows that

- ¥ a B (155)

9

By substituting eq. (14l) into (146), the following equation results.

[ B t, .‘ " 1 [ oV, -1
NS v 33 (B+1) (156)
(._g L= ° T s
v

1
The factor Lw/:w < in eq. (153) is obrained from eq. (61) in ref., 26 as
]

] -~
:, L.116 + 411 B, 6% 1+ ,527 5086

2

A ~ (1.1 - .1625t + ,0625t%)

. 1+ .527 ss°686 1,116 + .411 5 €8¢ © e
]

(.85 + .15t -1z )
T (57
WS

X

As suggested by Cohen (page 33 of ref. 26), the first fector on the right side
of eq. (157) was used to replace the factor 1.0333 in eq. (61l) of ref. 26.
Since the wall is assumed to be relatively coocl and isothermal,

(158)

The final form of the laminar heating-rate ratio is obtained by substitut~
ing egs. (146), (155), and (156) into eq. (153), which gives
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u 4
P _&4 ¥
t
4y Pg Voo Ci,s
= X (159)
,8 s 1/2
]
2(B+1) [aVTLJ p Je .2
v 38 PV
® T E &
] 1
where the factor cw/cw . is obtained from eq. (157), B 1is determined from
} v
egs. (107) to (109), and [ 352 ] may be cbtained from the modified Newtonian
T 8

value given by eq. (132).

Leminar heating rates are cbtained by applying eq. (159) along an inviscid
surface streamline from the stagnation region to the end of the body or the
beginning of the transition region, whichever comes first. Heating rates along
each streamline are computed independently of the other streamlines. The
integral in the denominator of eq. (159) can be evaluated by quadrature for

each integration step along & streamline.

Transition Region Heating Rates

The location of the transition region on a body is a subject open to much
speculation and debate. It is not proposed that the present method will predict
the location of the transition region. Instead, the beginning and end of the
trarsition region may be specified by one of the three options listed below.

1., Geometric location, or

2. A specified value of the integrated unit Reynolds number along a
peUe

e

surface inviscid streamline, i.e. Rnl = J DS, or

©

3. A specified value of the momentum thickness Reynolds number,

e U 8
an = -53—1i—13, along the inviscid surface streamline.
e

Once the beginning and ond of transition 1s datermined by ome of the three
methods above, the heating rate in the transition region is calculated as a
weighted average of the local laminar and turbulent heating rates. Thus the

heating rate is written as
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q
lam

- q
W
v rurb

= O at the beginning of

n with We
for calculating

he tyeighting" functio
* )} at the end of cransition-
n in the next gectlion.

where wf is t
A method

transition and We

heating rates ig give
hod similar to that

the turbulent
ian distribution

The "'wel

is determined by # met

ghting' funcEiol We
This method uses & Gauss

of Dhawan and Narasimha (zef. 18} .
for W given by
we = 1 - exp(-nhl2 gtr) (161)
where
S - St N
r
F’:r )\ 1 (162)
inviscid surface streamline, Stri is the distance
distance where

g is distance along th2
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However, when transition is specified by the integrated unit Reynolds
number or momentum thickenss Reynolds number, the corresponding geometric
position along & streamline for the end of transition may lie off the body sur-
face. In this situtetion the value of Stre cannot be determined. To circum-
vent this situation, the "weighting' function for these two options will be
based on the value of the integrated unit Reynolds number (Rnl) or momentum
thickness Reynolds number (an). Therefore eq. (l64) becomes

2
bo74 (Ry) - Rnl.cri) 1

v, = 1 - exp ( -.412 - (165)
£ '(Rnl,tre R“l,tri)
when transition is based on the integrated unit Reynolds number, or
. 2
4,74 (Rq ~ R )
we = 1 - exp { -.412 Mo~ Pm,tri (166)

(R“m,tre - R“m.tri),

for transition based momentum thickness Reynolds number, where the subscript
"tri" refers to the beginning of transition and "tre" refers to the end of

transition.

Turbulent Heat-Transfer Rates

Cooke and Hall (ref. 6) have shown that the axisymmetric analogue is
applicable to turbulent as well as laminar boundary layers. There are many
methods that could be used to calculate turbulent heating rates on axisymmetric
bodies. The approach used here is to apply the axisymmetric analogue to a
modified form of the integral method of Reshotko and Tucker (ref: 20) to obtain
the turbuleat momentum thickness. Then the momentum thickness is used to cal-
culate the local skin friction coefficient from the correlation formula of
Spalding and Chi (ref. 19), and finally the Karman form of Reynolds Analogy
(see ref. 21) is used to calculate the turbulent heating rate corresponding to
the skin friction coefficient.

Momentum thickness. - Reshotko and Tucker (ref. 20) developed an integral

method to calculate the momentum thickness from the numerical solution of two
first-order differential equations for em and Hi along a streamline for a
perfect gas. This method is modified here to apply to a perfect gas or
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librium gases if the ratio ae/ae p is replaced by VEe/Ha. For the perfect
]
gas these two exprassions are one and the same; however, they are different for
: DM

an equilibirum gas. As a result, the quantity %— ng must be replaced by
H Du e
F;%— 552 - Then the integral form of the momentum equation becomes

De e DU 9 C

m 2, m_ e m Dh f
s *TEYE-MIT5E YR s "2 (157)

equilibrium air, and the skin friction coefficient used in the method is that
value computed simultaneously from the Spalding-Chi approach described helow.
The basic method used by ref. 20 can be applied to both perfect and equi-

where Cf is the local skin friction coefflcient. Following ref. 20, the
compressible form factor is given by

¢ _ s U;__
H = T Htr + oh (168)
m e e
where h
A
1-1tr Hi + (Hs 1)(1.3) (169)
The incempressible form factor Hi is calculated from the equation 1
DH H DU H ‘h
i '8 e 1 2 _ . W
7§ - " hU DS 2 (H1+l>[m1 L+ -v
ee . 8
(2.6 (, - 1) - 5+ D2 |- w03, (8, - 1) =L (170)
) i 4.3 ML M SR | 2 em :

where due account has been made for a perfect gas or equilibrium air.
Eqs. (167) and (170) are integrated numerically along an inviscid surface
streamline, starting at the beginning of the transition region. The initial

values of em and H are the laminar values given by ref., 17, and C is

£

supplied by the Spalding-Chi approach described below.
Skin friction coefficient. - The turbulent skin-friction coefficieat is

determined by the correlation formula of Spalding and Chi (ref. 19) based on
momentum thickness Reynolds number but modified to account for perfect or
equilibrium gases. Eq. (52) of ref. 19 is modified to read
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By = (/0702 by /m T (171)
wheras
; Y w1 4+ 0.89 ;%— (172)
e e

and the factor 0.89 is the turbulent recovery factor. With the definitions

e Ue o
R, = —————— (173)
§ He
+ 1/2 ‘
Ug (2/Cf Fc) (174)

the compressible form of eq. (28) in ref. 19 becomes

1,4
"5 (g

RS )2 + (KE)_l [ [1 - (Z/KU;)] exp (KUZ)

+ 1 +, 2 1 b3

PR -
- 35 K - g5 (KU ] (173

where X = 0.4 and E = 12, In the application of eq. (173), FRG and RG are
computed from eqs. (171) and (L173), respectively, with em obtained from the
Reshotko-Tucker method described above. The UZ is calculated fgpm eq., {(175)
by an iterative schere such as the Newton-~Rhapson method. Using Ug, eq. (174)

gives the incompressible skin friction coefficlent since

n ¥ )
Cf,i Ec Cf (176)
Finally, Cf follows from eq. (176) once Fc has been evaluated.
In ref. 19. F_  1s defined by
1
172 ‘ o2
P e | | & a {2 (177)
e i\ Pe Ua
° :




where p and U are the density and velocity across the turbulent boundary
layer. The boundary layer approximations give p = P and for the perfect gas
the equation of state yields

L]
=

L. &, _& (178)
Pe T By

where hbl is the enthalpy inside the boundary layer, which is assumed to

follow Crocco's relation

M1 Py, [P P v, [y te] & (179)
h h h 8] h 2 -
e e e e e Ue

Upon substituting eqs. (178) and,(179) inta (177), the resulting expression can
be integrated for the perfect gas to yield

- -
r 2 Eﬁﬂ -1l - [ Dy = hw]
h B .
F oa |8¥_ tan T e o
e h
e haw
/2.1
. V hy i
[Eax;ljﬁz] ~2 :
-l ) he L
+ tan - (180)
N
Vi |5 ]
- Q e

For equilibrium air es. (180) is not valid because eq. (178) is based on
a perfect gas. he density-enthalpy relation for equilibrium air ie obtained
from eq. (1186) as

L= 10477 [1 = (n_/h )" %173

6123

B a
e 1 - 1,0477 [1 - (h /h.)

.612%3 (181)
(hbl/he) ]

Then using eq. (179) in (18l), the integrul in eq. (177) is evaluated numeri-
cally to obtain Fc for equilibrium air, !

Turhulent Heating-Rate Expression. - The Karman form of the Reynolds

analogy factour is given by ref, 21 as
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N c -1
2-SLi. {145 —251 [Pr -1+ 1n <§~35;i—ia } (182)

Cf,i 6
where Pr = 0,725 was used. As 1n ref. 21, it is assumed that the compressible
Reynolds analogy factor is the same as the incompressible facter, i.e.

N }
2-gF a2 Shi (183)
f £,1
Then, since
qw(778)
Nom = ~ (184)
ST Pe Ue(haw H;T
the turbulent heating rate follows from eqs. (182)-(184) as
(h_ ~h ) C C r -1
aw_w f £,1 S Pr+l
q o — P, U —=5 (14 5/ S22 [Pr—l+ln(——-—-——-—)]
Yeurb 778 e e 2 2 6
(185)

Both Cf and Cf 1 are obtained from the Spalding-Chi approach described above.
]

COMPUTATIONAL METHOD

The method developed herein was programmed on the IBM 360/75 digital

computer at the North Carolina State University. This program is also com~

patible with the CDC 6600 computer at the Langley Research Center, NASA, A
detailed description of the computer program appears in Part II of this report
(NASA CR-111922).
To run a typical case, the following data are needed ag
lc pa) T“, V“, OL, CW.

input parameters:

2. specify a perfect gas (v = 1.4) or equilibrium air.
3. body geometry data as Cartesian coordinates of points around the
circumference at several axial stationsg.

specify surface pressure distribution by one of the following three
methods:
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a) p/pB from some other source for points around the circumference
at several axial stations along the body, or

b) modified Newtonian pressure distribution. or

c) modified Newtonian pressure distribution, but streamlines
computed by the simplified method of ref, 14,

5. specify the beginning and end of the transition region by one of the

following three methods:

a) geometric location, which is specified by the Cartesian coordi-
nates of points around the circumference of the body for both
the beginning and end of tramsition, or

b) values of an at the beginning and end of transition, or
c¢) values of Rn, at the beginning and end of transition.

If transitional and turbulent heating rates are not required, lami-
nar heating rates alone may be calculated.

6. The value of B for each inviscid surface streamline to be computed,
where 0 s 8 < 180°, 8 = 0 is the streamline in the windward plane
and B = 180° ig the streamline in the leeward plane,

All the input date used to calculate the results in this part of the

report are given in Part II. The computer program calculates heating rates and
other pertient data along each inviscid surface streamline independently of the

other streamlines.
RESULTS

To 1llustrate the present method, results are presented for blunted cones
at angles of attack, a blunted 70° slab delta wing, and the HL-10 lifting body.

Blunted Cones

Blunted 9° half-angle cone. - Figure 7 shows three inviscid surface

streamlines (8 = 3°, 20°, and 90°) calculated for a blunted 9° half-angle cone
at a = 10° and M_ = 18 using a perfect gas (y = 1l.4). Each of the three
streamlines was calculated by three different methods: (1) method of charac~-
teristics (ref. 28), (2) present method using modified Newtonian pressures,

57




L

and (3) simplified streamlines by the method of reference l4. Although the
geometry of this body could be represented by simple analytical expressions,
the coordinates of 19 points around the circumfzrence of the half body at 20
axlal stations were used to generate the berdy geometry by the doubly cubic
spline function. Figure 7 shows that the B = 5° and 20° streamlines calculated
by the present methéd using modified Wewtonian pressures are in good agreement
with the "exact' streamlines calculated by the method of characteristics. The
B = 90° gtreamline calculated by the present method does not agree well with
the "exact" result, but this is to be expected since this streamline goes into
the "shedowed" region (¢ . 154°) on the coaical afterbody where the pressure
is set equal to free-stream static pressure. The simplified streamlines are
significantly lower than those calculated by the other two methods.

Blunted 15° half-angle cone. - In reference 29 Cleary gives tabulated

experimental laminar heating-rates on s spherically blunted 15° half-angie cone
at M = 10.6. In order to compare results from the present method with some of
this data, streamlines and laminar heating ratcs were calculated on this con-
figuration for & = 20°, R_ = 0.375", p, = 2.6614 1b/£c?, T_ = 89.971°R, and

V, = 4928.1 ft/sec, (M_ = 10.6). Although a perfect gas with y = 1.4 was used
in the calculations, gas imperfections in the wind tunnel stagnation properties
of P, = 1.73 x 105 lb/ft2 ana ’l‘S a 2000°R were taken into account to determine
the free-stream conditions. In addition, it was determined that a value of

Cw 2 hw/HS = 0,251 corresponds to Tw/Ts = 0.270.

The body geometry was specified by the cocrdinates of 20 points around
the circumference of the half body at 19 axial stations, Streamline patterns,
calculated by the pregent method using modified Newtcnian pressures and by the
simplified method of ref. l4, are shown in figure 8 for 8 = 1°, 10°, 15° and
45°. This figure shows that the streamlines move from the windward plane and
rapidly approach the leeward plane, and the streamlines calculated by modified
Newtonian pressures wrap around the surface at a steeper rate than the simpli-
fied streamlines. The '"equivalent radius" or scale factor increases along a
streamline on the windward side, where the strezamlines are diverging, but
decreases along the leeward side due to converging streamlines. As mentioned
previously, the streamlines are continued into the ''shadowed" region of the
body (¢ = 137.4°), although the pressure is assumed to be free-stream static
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pressure in that region. It is possible that the flow separates from the sur-
face somewhere in thas region, and therefore the calculated streamlines and
heating rates are questionable there.

Laminar heating-rate ratics (qw/qw,s)’ calculated by the present method
using both the streamlines computed from modified Newtonian pressures and the
simplified streamlines, are compared with Cleary's experimental data" in fig-
ures 9, 10, and 1l. Figure 9 shows the heating~-rate ratio along the windward
plane, whereas figures 10 and ll show the circumferential distribution of
heating-rate ratios at axial stations of x = 3,56" and 9.36", respectively
(corresponding to xs/L = 0.207 and 0.466 in ref. 29), Very good agreement
with the experimental data is obtained for the heating-rate ratios using
modified Newtonian pressures and reasonably good agreement ueing simplified
streamlines for this case. For this relatively simple body shape, the heating-
rate ratios calculated using the simplified streamlines are close to thosge
using mcdified Newtonian pressures although the streamlines themselves differ
by a large amount (see fig. 8)., It is significant to note that the ratio of
the angle-of-attack to the cone half-angle is 1.33 for this case, and thusz the

present method iz not limited to small angles of attack.

Blunted 70° 3lab Delta Wing

This configuration is a 70° swept delta wing with a cylindrical leading
edge which is tangent to a flat slab on the upper and lower surfaces. The
blunt nose is a spherical cap, and the radius of both the spherical cap and
cylindrical leading edge is one foot. Although this configuration could also
be specified analytically, ccordinates of 13 points arcund the semi-periphery
at 19 axial stations (0 = x < 1.95 ft) were used to generate the body shape.

Figure 12 illustrates the streamline patterns calculated by the present
method (using modified Newtonian pressures and a perfect gas) on this delta
wing at & = 10° and M_ = 8 (p_ = 10° 1b/fc%, T_ = 416°R, V_ = 8000 ft/sec, and
;w @ 0.4). It can be seen that the B = 10° streamline is converging towards
the center line on the flat slab which causes the scale factor to start

W
The experimental heating rates in ref, 29 are raticed to the calculated
d, g = 35.94 BTU/ftz-sec in this report.
»
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decreasing, On the other hand, the 8 = 60° streamline runs nearly parallei to
the leading edge beyord the nose, and at x = 2 £t the scale factor is still in-~
creasing which indicates the streamlines in this region are diverging. The
streamline patterns in figure 12 are qualitatively similar to the experimentsl
oil-flow patterns in reference 30 for this angle of attack.

Laminar, transitional, and.turbulent heating-rate ratios along the wind~-
ward streamline (¢ « 0) are shown in figure 13. Transition was arbitrarily
chosen to begin at an - 1.0"3 and end at an = 2 x 103, These values were used
to illustrate the capability of the present method to calculate transitional
and turbulent heating zates, and they should not be construed to represent—the
actual transition region on this body. As shown in figure 13, the transition
region corresponding to these values of an lies in the narrow band
0.268 ft < x & 0.318 ft. This figure also shows that the heating~rate ratio
increases sharply in the transition region, and then decreases in the fully
turbulent region. For x » L ft the windward streamline is on the flat slab

where the heating-rate ratio decreasses very slowly.

HL-10 Lifting Body

The geometry of the HL-10 Lifting body without fins is {llustrated by plan
and side views in figure 14 and cross sections in figure 15. This body is an
example of a shapeAwhose geometry is difficult to describe analytically. In the
present method the body geometry was generated from the coordinates of 20 points
around the semi~periphery at 20 exial statiouns.

Figure 16 depicts laminar, transitional, and turbulent heating-rate ratilos
calculated along the center line of the lower surface for a = 20°, M_ = 10,

P, " lO3 lb/ftz, T, = 416°R, V_ = lOs ft/sec, and Cw a 0,1, Equilibrium air
and simplified streamlines were used in these calculaticns, and transition was
arbitrarily chosen to begin at x = 33,07" and end at x = 54.,24". Again, the
heating-rate ratio increases sharply in the transition region, and then begins
to decrease near the end of that region.

Difficulties were encountered for this case when modified Newtonian pres-
sures were used to calculate the inviscid surface streamlines. Along the wind-
ward streamline the scale factor went to zero, which indicates merging or

crossing of streamlines and invalidates the heating-rate calculations. This
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difficulty can be traced to the fact chat away from the nose the lower surface
of the HL-10 body is flat in the z-direction, and modified Newtoaian pressures
are constant acrouss a flat surface. As shown in the Appendix, this feature of

modified Newtonian pressures generally produces questionable results.
D1SCUSSION

In the calculation of inviscid surface streamlines and scale factors,
firgt and second derivatives of both the body geometry and pressure are needed.
The doubly cubic spline function was found to represent the geometry of the
bodies considered herein satisfactorily. However, its accuracy is affected by
the number and Location of body positions used, and the spline function does
not smooth cut data points (although it does smooth derivatives). When pressure
data from some other source ace used in the present method, they should be
smoothed before using them so that the pressure spline function will be
accurate.

Inviscid surface streazmlines calculated from modified Newtonian pressures
compared well with those from the method of characteristics for a 9° half-angle
cone at & = 10° and M_ = 18, except for the '"shadowed" region. In the
"shadowed'" region on the leeward side, the pressure is assumed to be constant
at p_, and thus the streamlines calculated in this region are inaccurate and
follow geodesics of the surface (see ref, 7). In addition, the flow may sepa-
rate from the surface somewhere in the ''shadowed" region, which mekes the
results from the present method questionable there.

1he present method was found to predict laminar heating rates very well on
& blunted 15° half-angle cone at o = 20° and M, = 10.6 using modified Newtonian
pressures. Additional comparisons of the present theory with experimental data
on other body shapes and for transitional and turbulent heating should be made
to assess the accuracy of the theory more thoroughly.

Bodies with flat segments, like the blunted 70° glab delta wing and the
HL-10 lifting body, present difficulties when inviscid surface streamlines are
calculated using modified Newtonian pressures or simplified gtreamlines. On a
flat segment, both the modified Newtcnian pressure and the angle ¢ are constant,

and consequently eq. (48) shows that the streamlines are straight (& = constant),
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and the direction of e¢ach streamline is determined by its direction upon enter-
ing that flat segment. Since each streamline may have a different direction at
the beginning c¢f the flat segment, it is possible for the streamlines calculated
from medified Newtonian pressures to cross over one another®. In addition, eq.
(75) shows that D2h/DS2 = 0 aleng these calculated streamlines which means that
the scale factor L 18 linearily increasing or decreasing along the streamline,
depending on the value of Dh/I'S at the beginning of the flat segment. In par-
ticular, 1if Dh/DS < O it is easy to see how h calculated by this approximate
method may go to zero (as encountered on the HL-~10 body) and even become nega-
tive. The scale factor along the windward streamline is discussed more thor-
oughly in the Appendix. On a flat segment the simplified streamlines are all
parallel and the scale factor h along each streamline i1s constant and equal
to the value the streamline had upon entering the flat segment. The difficul-
ties encountered on flat segments with trese two approximate methods for calcu-
lating inviscid surface streamlines can ba circumvented by calculating the
streamlines from an accurate pressure distribution.

In the present method the boundary layer is asgsumed to be sufficiently thin
thaet the flow may be considered to be isentropic at the edge of the boundary
layer. This assumption may be invalid away from the stagnatién point on some
bedy shapes due to the boundary layer "swallowing" the entropy layer. When
thls occurs, the entropy at the edge of the boundary layer could be signifi-
cantly less than the entropy aft of a normal shock wave.

The computationalAtime required to compute the examples given herein is
highly dependent on the number of streamlines specified in the input data.
Typical cases with six streamlines calculated from modified Newtonian pressures
required less than 4 minutes on the IBM 360/75 computer for a perfect gas. When
simplified streamlines were used, the computational time was reduced about 50%.
On the other hand, tha computational time was increased about 10% when equilib-

rium alr was used in place of a perfect gas.

Of course, it 1s physically impossible for one surface streamline to cross

another.
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CONCLUDING REMARKS

A method is developed for calculating inviscld surface streamlines and
laminar, transitional, and turbulent heating rates on general blunt-nosed three-
dimensional bodies at angles of atrack in hypersonic flows. Relatively simple
techniques are employed to keep the computational storage and run time down to
small values (less than 4 minutes for a typical case on the LBM 36C/75 computer).

Streamlines calculated from the modified Newtoniwn pressure distribution
were found to compared tavorably with those from the method of characteristics
on the windward side of a blunted 9° half-angle cone at o = 10° and M_ = 18.
Laminar heating rates calculated on a blunted 15° half-angle cone at o = 20°
and M_ = 10.6 compared very well with experimental data.

Streamlines and laminar, transitional, and turbulent hearing rates were
calculated on a blunted 70* slab delta wing at & = 10° and M = 8, and on the
HL-10 lifting body at « = 20° and M_ = 10. These bodies have some flat segr
ments, and since the modified Newtonian pressure is constant over a flat sur-
face, streamline patterns and corresponding heating rates calculated from
modified Newtonian pressures are questionable. This difficulty can be cirzcum-
vented by using an accurate surface pressure distribution in lieu of modified
Newtonian pressures.

The relatively small amount of numerical computations required coupled
with reasonably good accuracy, makes the present method attractive for engi-
neering applications. Additional comparsions with experimental data on other
body shapes and for transitional and turbulent heating are needed to assess

the accuracy of this method more thoroughly.

Mechanical and Aerospace Engineering Department,
North Carolina State Universiry,
Raleigh, North Carolina, Augusx 25, 1971...
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APPENDIX

Scale Factor Along Windward Streamline

Along the windward streamline ¢ = 0, 8 = 0, and symmetry requirements
. 15 .18 |
dictate that & = O, 6¢ 0, aV/3¢ = 0, and b 9F " F 3 Therefore, for this
streamline
1 38| 198 .1 ___ :
h asi £ a¢l Ve 35 V sim LY (A1)
$=0 ¢=0 om0
and
sic [ 30 1_Df|
e - = (a2)
h @ . R, DS
¥l o Ry P51 gmo
where
sin T %%% (A3)
$=0 ¢=0
and -l
R, = [—}_—i%] (ad)
$=0

is the body radius of curvature in a cross-sectional plaene (x = constant) at

® = 0. When eqs. (Al) and (A2) are substituted into eq-. (64), there results

59——! [1 2_ (v sin e)+l—9£] (A5)
h BS| g VE 3¢ R, DS | 0

This equation can be integrated to give the scale factor along the windward
streamline only when the velccity-gradient texm on the right side is knowm.

For an axisymmetric body (o = ¢), R, = £ and eq. (A5) reduces to eq. (B-11)

¢
in reference 1ll.

When only the surface pressure distribution is known, eq. (75) must be
used in lieu of eq. (AS5) to calculate h, and along the windward streamline

it reduces to
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iy Dsz\ N | \BD B, DS DS
1 %p ,
+73 2 (82
£° 9 ¢m0
where
Rx = - ——~'JL—§F— - i the body radive of curvature in the ¢ = 0
cos T 3%
: X : :
plane. T£ the lower gurface of & throo-dimennional vody is flat in the
z-dirxection, then R¢ » w and due %9 gynmet¥y (%p/3¢)$f% but generally
(ﬁzpla¢2)¢_o ¢« 0, although the modified Newtonian prassuré distribution gives
(sz/3¢2)¢_0 w 0., When & segment of the loweX gurface is §lat 1 “we direc—
tions, then R¢ + = and R, 7 » and @q. (A6) veduces to
2 2
iph .__L}.PBP.E-.;.}—LE (A7)
h D52 ¢m0 pvz % DS DS f2 3¢2 =0
treamline

long the windward 8

rect gcale factor &
ed., When

e distribution ig us
eq. (A7) xeduces to

s on a flat gegment,

will yield the cot
1y if the cor¥ec

pressuveé distr
erally give

t pressul
jbution isa used,
8 jneoxrect result

This equation
on a flat segment o
modified Newtonian

the
= 0, whiceh gen

2 jne?
(D“0/D87) 0
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Figure 12. Streamlines on the lower side of a blunted 70° slab delta wing at
o = 10° and M_ = 8.
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76




_h
ﬂ
|
v

o

A e o

a787=1

77




A AN

L

0T = W
pue .oz = © 32 4poq SUTIFIT OT-TH 3O SUITWE3II5 PIBAPUTA 3uoTe of1EI 93v1-3uT2IBIH ~ ‘9T a1udtg
‘up ‘x
0ac st 00t 09 0
i T T T T T T T 10
..ﬂ-
No°1
=€
# %%
“b
191
SOUTTWea11S
petyrTdrmTs Bursn poylaw juasaad 102
noﬁu«uLuH

juarngany bt TeurweT »GC




